Applied、EUVの∨,鯣裳させるパターンシェイピングを開発
S長13.5nmのEUV(Extreme Ultra Violet)リソグラフィでもダブルパターニングが導入され始めた。ただし、解掬戮30nmまでしかuられないため、位合わせがMしい。Applied Materialsは、最小のパターン幅をW定に形成するパターンシェイピング\術を導入する「Centura Sculpta」を開発した。これを使えばダブルパターニングと同等な∨,W定に形成できる。

図1 EUVのダブルパターニングと等価的に同じ∨,鮗存修垢襯僖拭璽鵐轡Дぅ團鵐 出Z:Applied Materials
現在、ロジックプロセスのファウンドリなどが5nm、3nmプロセスノードと主張しているが、配線幅/配線間隔の実∨,30nmピッチが最も微細だという。ダブルパターニングはそのピッチを半分度に微細化するための\術である。しかし、微細な配線になるとkつの妓に向けたグレーティングパターンを\えてくるが、配線の端と向かい合った配線の端の間(tip to tip)の解掬戮魯僖拭璽鵑並んだ妓の解掬戮茲蠅ず落ちてしまう(図2)。
図2 グレーティングパターンのY妓より直角のX妓(パターンの端同士の{`)の解掬戮気低い 出Z:Applied Materials
図2にある通り、現XのEUVのシングルパターニング\術、その向かい合ったパターンの端同士の間は25〜30nmしか形成できない。ダブルパターニングで形成できたとしても15〜20nmVまりである。ダブルパターニングでは位合わせ誤差を小さくすることがMしく、歩里泙蠅篭砲瓩撞Kくなる。
そこで、Appliedは2v`のパターニングにリソグラフィを使わずに、プラズマエッチングでパターンを削る\術を開発した。的にはEUVで例えばビアホールなどのパターンを形成した後にAめ妓からプラズマリボンビームでウェーハCをスキャンする。プラズマで発擇靴織ぅンと中性ラジカルの混合ビームをAめから当てることでCを削っていく。それもウェーハをv転させ向きを調Dして均kにパターンを削りDっていく(図3)。
図3 プラズマビームをAめから照oすることで、パターンの篳匹鮑錣螢僖拭璽鵑鮑戮する(嵜泙ら下図へ) 出Z:Applied Materialsのビデオ
この桔,任△譴、EUVリソグラフィは1vで済み、投@コストはWくなるとともに]コストもWくなるという。パターニングはEUVを使うよりも~単になるためだ。このT果、EUVの消J電はかなりjきいため、電およびそのコストの削につながりCO2削にもなる。
プラズマビームで削りDるこの桔,蓮▲咫璽爐慮きやビーム單戞淵廛薀坤淕度など)、角度、スキャン]度などでU御する。エッチングを時間でU御する念に瑤討い。Applied Materialsは、EUVダブルパターニングにとって代わる\術になりうると期待している。